Benha University	Final Term Exam Date: May, 2016 Faculty of Engineering- Shoubra Eng. Mathematics \& Physics Department Qualifying Studies (Mathematics)	Operations Research Duration: 3 hours

- Answer All questions The exam consists of one page - No. of questions: 4 Total Mark: 200

Question 1

(a)Write the mathematical form of mathematical programming problem.

Also, classify the mathematical programming problems.
(b)Write and solve the dual problem of the LP problem:
minimize $f=3 x+y$

$$
\text { s.t } x-y \leq 4, \quad-x+y \leq 1, \quad x+y \geq 3, \quad x, y \geq 0
$$

Question 2

Solve the LP problems:
(a) maximize $f=x-3 y+3 z$

$$
\text { s.t } 2 \mathrm{x}+\mathrm{y}-\mathrm{z} \leq 4, \quad 4 \mathrm{x}-3 \mathrm{y} \leq 2, \quad-3 \mathrm{x}+2 \mathrm{y}+\mathrm{z} \leq 3, \quad \mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0
$$

(b) minimize $\mathrm{f}=-5 \mathrm{x}-\mathrm{y}-4 \mathrm{z}$

$$
\text { s.t } x+y+2 z \leq 20, \quad 2 x+3 y+2 z=10, \quad x+2 y+2 z \geq 6, \quad x, y, z \geq 0
$$

Question 3

(a) State the definition of convex set.
(b) State the definition of concave function.
(c)Prove that: For any convex programming problem, the set of all optimal solutions is convex.

Question 4

(a)A manufacturer makes automobiles and trucks in a factory that is divided into two shops. Shop1, which performs the basic assembly operation, must work 5 man-days on each truck but only 2 man-days on each automobile. Shop 2, which performs finishing operations, must work 3 man-days on each automobile or truck that it produces. Because of men and machine limitation shop1 has 180 man-days per week available while shop 2 has 135 man-days per week. If the manufacturer makes a profit of LE 300 on each truck and LE 200 on each automobile. How many of each should he produce to maximize his profit?
(b)Solve the assignment problem:
(c)Solve the transportation problem

Model Answer

Question 1

(a) A mathematical programming problem can be formulated as follows:
maximize (or minimize) $f(x)$
subject to $M=\left\{x \in R^{n}: g_{r}(x) \leq 0, r=1,2, \ldots, m\right\}$
$f(x)$ is called the objective function
x is the vector of the variables (decision variables, unknowns)
$g_{r}(x) \leq 0, r=1,2, \ldots, m$ are constraints.
M is called the feasible domain of the problem which is formed by the constraints.
The mathematical programming problems can be classified as:
1- Linear programming (LP) problems when $\mathrm{f}(\mathrm{x})$ and $g_{r}(x) \leq 0, r=1,2, \ldots, m$ are linear functions. It take the form

Maximize (or minimize) $f(x)=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$

$$
\begin{array}{ll}
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{array}
$$

This problem can be written in matrix form as follows:
Maximize (or minimize) $\mathrm{f}(\mathrm{x})=\mathrm{Cx}$

$$
\text { s.t } \quad \mathrm{Ax} \leq \mathrm{B}, \quad \mathrm{x} \geq 0
$$

2- Non linear programming problems if $\mathrm{f}(\mathrm{x})$ is non linear or either one from $g_{r}(x) \leq 0, r=1,2, \ldots, m$ is non linear function.
3- Quadratic programming problems if $\mathrm{f}(\mathrm{x})$ is quadratic function and $g_{r}(x) \leq 0, r=1,2, \ldots, m$ are linear functions.
4- Integer programming problems if the decision variables are integers.
5- Mixed integer programming problems if some of the decision variables are integers.
(b)The dual problem is:

Maximize $g(y)=4 y_{1}+y_{2}+3 y_{3}$

$$
\begin{aligned}
y_{1}-y_{2}+y_{3} & \leq 3 \\
-y_{1}+y_{2}+y_{3} & \leq 1, \quad y_{1} \leq 0, \quad y_{2} \leq 0, \quad y_{3} \geq 0
\end{aligned}
$$

Then: Maximize $g(y)=-4 y_{1}^{\prime}-y_{2}^{\prime}+3 y_{3}$

$$
\text { s.t } \quad-y_{1}^{{ }_{1}}+y_{2}{ }_{2}+y_{3} \leq 3
$$

$$
y_{1}^{\prime}-y_{2}^{\prime}+y_{3} \leq 1, \quad y_{1}^{\prime} \geq 0, \quad y_{2}^{\prime} \geq 0, \quad y_{3} \geq 0
$$

The steps of the simplex method goes as:

B.V	y_{1}	$y_{1}{ }_{2}$	y_{3}	s 1	s 2	Solu
s 1	-1	1	1	1	0	3
s 2	1	-1	1	0	1	1
f	4	1	-3	0	0	0
s 1	-2	2	0	1	-1	2
y_{3}	1	-1	1	0	1	1
f	7	-2	0	0	0	3
y_{2}	-1	1	0	1	$-1 / 2$	1
y_{3}	0	0	1	0	$1 / 2$	2
f	5	0	0	1	2	5

Then the optimal value is $\mathrm{g}^{*}=\mathrm{f}^{*}=5$ and the optimal solution $(\mathrm{x}, \mathrm{y})=(1,2)$.

Question 2

(a)The standard form of this problem is:
maximize $f=x-3 y+3 z$

$$
\text { s.t } \begin{aligned}
2 \mathrm{x}+\mathrm{y}-\mathrm{z}+\mathrm{s}_{1} & =4 \\
4 \mathrm{x}-3 \mathrm{y}+\quad \mathrm{s} 2 & =2 \\
-3 \mathrm{x}+2 \mathrm{y}+\mathrm{z}+\quad \mathrm{s} 3 & =3, \quad \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3} \geq 0
\end{aligned}
$$

where $\mathrm{s}_{1}, \mathrm{~s}_{2}$ and s_{3} are slack variables.
The steps of the simplex method goes as:

B.V	x	y	z	s 1	s 2	s 3	Solu
s1	2	1	-1	1	0	0	4
s2	4	-3	0	0	1	0	2
s3	-3	2	1	0	0	1	3
f	-1	3	-3	0	0	0	0
s1	-1	3	0	1	0	1	7
s 2	4	-3	0	0	1	0	2
z	-3	2	1	0	0	1	3
f	-10	9	0	1	0	3	9
s1	0	$9 / 4$	0	1	$1 / 4$	1	$15 / 2$
x	1	$-3 / 4$	0	0	$1 / 4$	0	$1 / 2$
z	0	$-1 / 4$	1	0	$3 / 4$	1	$9 / 2$
f	0	$3 / 2$	0	0	$5 / 2$	3	14

This is the optimum case. Then, the optimal solution is:
$\left(x^{*}, y^{*}, z^{*}\right)=(1 / 2,0,9 / 2)$ and the optimal value is $\mathrm{f} *=14$.
25 Marks
(b) The standard form of this problem is:
minimize $f=-5 x-y-4 z$

$$
\text { s.t } \quad \begin{aligned}
x+y+2 z+s_{1} & =20 \\
2 x+3 y+2 z+u & =10 \\
x+2 y+2 z-t+v & =6, \quad x, y, z, s_{1}, t, u, v \geq 0
\end{aligned}
$$

where s_{1} is slack variable, t is surplus variable and u, v are artificial variables.
Let $\mathrm{w}=\mathrm{u}+\mathrm{v}$. Then, the objective of phase one is:

$$
w+3 x+5 y+4 z-t=16
$$

The steps of phase one goes as table :

B.V	x	y	z	t	s 1	u	v	Solu
s	1	1	2	0	1	0	0	20
u	2	3	2	0	0	1	0	10
v	1	2	2	-1	0	0	1	6
f	5	1	4	0	0	0	0	0
w	3	5	4	-1	0	0	0	16
s1	$1 / 2$	0	1	$1 / 2$	1	0	$-1 / 2$	17
u	$1 / 2$	0	-1	$3 / 2$	0	1	$-3 / 2$	1
y	$1 / 2$	1	1	$-1 / 2$	0	0	$1 / 2$	3
f	$-9 / 2$	0	3	$1 / 2$	0	0	$-1 / 2$	-3
w	$1 / 2$	0	-1	$3 / 2$	0	0	$-5 / 2$	1
s1	$1 / 3$	0	$4 / 3$	0	1	$-1 / 3$	0	$50 / 3$
t	$1 / 3$	0	$-2 / 3$	1	0	$2 / 3$	-1	$2 / 3$
y	$2 / 3$	1	$2 / 3$	0	0	$1 / 3$	0	$10 / 3$
f	$-13 / 3$	0	$-10 / 3$	0	0	$1 / 3$	0	$-10 / 3$
w	0	0	0	0	0	-1	-1	0

This is the end of phase one. Also, it is the of phase two.
This is the optimum case. Then, the optimal solution is:
$\left(\mathrm{x}^{*}, \mathrm{y}^{*}, \mathrm{z}^{*}\right)=(0,10 / 3,0)$ with optimal value $\mathrm{f} *=-10 / 3$.
30 Marks

Question 3

(a)Convex set: A set M is called convex if for all two points x and y in M , all points of the line segment $\lambda x+(1-\lambda) y, \quad 0<\lambda<1$, lie in M.

5 Marks
(b)Concave function: A function f is called concave on a set M if for all two points x and

$$
y \text { in } M, \quad f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y), \quad 0<\lambda<1
$$

(c)Theorem:

20 Marks

Question 4

(a)Let x be the number of trucks and y the number of automobiles to be produced per week. Then

	x	y	available
Shop 1	5	2	180
Shop 2	3	3	135
Then the constraints are:			

$$
\begin{aligned}
& 5 x+2 y \leq 180 \\
& 3 x+3 y \leq 135
\end{aligned}
$$

The objective function is:
$\mathrm{f}=300 \mathrm{x}+200 \mathrm{y}$.
Then the LP model is:
maximize $\mathrm{f}=300 \mathrm{x}+200 \mathrm{y}$

$$
\begin{array}{ll}
\text { s.t } & 5 x+2 y \leq 180 \\
& 3 x+3 y \leq 135 \\
& x, y \geq 0 .
\end{array}
$$

This LP problem can be solved graphically as shown in Figure 8. Then the maximum profit is LE 12000 at the optimal solution $\left(x^{*}, y^{*}\right)=(30,15)$.

Final Exam and ILOs

Course Title: Operations Research
Code: EMM 406

Questions	ILOs				
	Knowledge and Understanding		Intellectual Skills		Professional and Practical Skills
	2.1.1	2.1.2	2.2.3	2.2.7	2.3.2
Q1	\checkmark		\checkmark		
Q2			\checkmark	\checkmark	
Q3	\checkmark		\checkmark		
Q4		\checkmark	\checkmark	\checkmark	\checkmark

Dr. Mohamed Eid

