Benha Univ Faculty of Eng. Mathe	versity Engineerir ematics &	ng- Sho Physic	oubra cs Department			Final Term Date: May Operations F	Exam , 2016 Research	EMM 4	06
Qualifying	Qualifying Studies (Mathematics) Duration: 3 hours								
• Answer All questions The exam consists of one page • No. of questions: 4 Total Mark: 200									200
Question	Question 1								• •
(a)Write the mathematical form of mathematical programming problem.									20
Also, o	classify t	he ma	athematical prog	gramming	g problems.				• •
(b)Write and solve the dual problem of the LP problem:									30
minir	mize $f =$	3x +	у	,		`			
s.t	$\mathbf{x} - \mathbf{y}$	$\leq 4,$	$-x+y \leq 1$,	$x + y \ge$	3, x, y ≥ 0)			
	•								
Question	$\underline{2}$	1							
Solve the	LP prob	lems:	2 2						25
(a) may	ximize f	= x -	3y + 3z						25
1	s.t $2x +$	y - z	\leq 4, 4x - 3y	$\leq 2, -3$	$\mathbf{x} + 2\mathbf{y} + \mathbf{z} \le$	<u>3,</u> x, y,	$z \ge 0$		
(1)		_	4						25
(b) min	nimize f	= -3x	x - y - 4z		•			0	25
	s.t x +	y + 2z	$z \le 20, \ 2x + 3$	y + 2z = 1	10, x + 2y +	$+2z \geq 6,$	x, y, z∠	:0	
0	2								
Question	<u>3</u>	• . •	C						5
(a) State t	the definition	ition (of convex set.	, •					5
(b) State t	the definition	ition (of concave func	tion.		11 .	1 1 .		5
(c)Prove 1	that: For	any c	onvex program	ming pro	blem, the set	t of all opti	nal solut	tions	20
18 conv	vex.								
	4								
Question	<u>4</u>	1	4 1 1	1, 1 .	6 4 4		• , ,	1	
(a) A mant	llacturer	makes	automobiles and	a trucks in	a factory the	at is divided	111to two	snops.	30
but only 2	mon dov		ach automobile	Shop 2 w	high parform	K 5 man-uay	s on each		
work 3 m	man-uay	s on e n each	ach automobile or t	shop 2, w	t produces B	Recause of m	en and m	s, must	
limitation	shon1 ha	11 cach	man-days per w	eek avail	able while sh	1000 2 has 13	5 man-da	avs per	
week If the manufacturer makes a profit of LE 300 on each truck and LE 200 on each									
automobile. How many of each should he produce to maximize his profit?									
(b)Solve	the assig	nmen	t problem: (c)Solve the	e transportat	tion problem	n		40
Machine Supply									
	[4 8	12	6] [3	0	5	4		
	10 7	10	0					15	
Job	10 /	10	9	1	3	5	0		
	8 5	11	7	L			L	20	
	16 7	8	5	6	2	4	5	1	
	-		-	L			L	25	
			De	mand 10) 15	20	15	60	
Good Luck	t E	xamin	ers: Dr. Mohame	d Eid	Dr. Fathi A	bd-Elsallam	Dr. Za	ıki Ahm	ed

Model Answer

Question 1

(a) A mathematical programming problem can be formulated as follows:

maximize (or minimize) f(x)

subject to $M = \{x \in \mathbb{R}^n : g_r(x) \le 0, r = 1, 2, ..., m\}$

f (x) is called the objective function

x is the vector of the variables (decision variables, unknowns) $g_r(x) \le 0, r = 1, 2, ..., m$ are constraints. M is called the feasible domain of the problem which is formed by the constraints.

The mathematical programming problems can be classified as:

1- Linear programming (LP) problems when f(x) and $g_r(x) \le 0$, r = 1, 2, ..., m are linear functions. It take the form

Maximize (or minimize) $f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$ subject to $a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$ $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$ $x_1, x_2, ..., x_n \ge 0.$

This problem can be written in matrix form as follows:

Maximize (or minimize) f(x) = C xs.t $Ax \le B, x \ge 0$

- 2- Non linear programming problems if f(x) is non linear or either one from $g_r(x) \le 0, r = 1, 2, ..., m$ is non linear function.
- 3- Quadratic programming problems if f(x) is quadratic function and $g_r(x) \le 0, r = 1, 2, ..., m$ are linear functions.
- 4- Integer programming problems if the decision variables are integers.
- 5- Mixed integer programming problems if some of the decision variables are integers.

-----20 Marks

(b)The dual problem is:

Maximize
$$g(y) = 4y_1 + y_2 + 3y_3$$

 $y_1 - y_2 + y_3 \le 3$
 $-y_1 + y_2 + y_3 \le 1$, $y_1 \le 0$, $y_2 \le 0$, $y_3 \ge 0$

Then: Maximize $g(y) = -4y_1^2 - y_2^2 + 3y_3$

s.t
$$-y_1 + y_2 + y_3 \le 3$$

$$y_1 - y_2 + y_3 \le 1$$
, $y_1 \ge 0$, $y_2 \ge 0$, $y_3 \ge 0$

The steps of the simplex method goes as:

B.V	<i>y</i> `1	<i>y</i> `2	<i>y</i> ₃	s 1	s ₂	Solu		
S 1	- 1	1	1	1	0	3		
s ₂	1	- 1	1	0	1	1		
f	4	1	-3	0	0	0		
S 1	-2	2	0	1	- 1	2		
<i>y</i> ₃	1	- 1	1	0	1	1		
f	7	-2	0	0	0	3		
<i>y</i> ` ₂	- 1	1	0	1	-1/2	1		
y_3	0	0	1	0	1/2	2		
f	5	0	0	1	2	5		
entirely value is $x^* - f^* - 5$ and the entired solution $(x, y) - (1, 2)$								

Then the optimal value is $g^* = f^* = 5$ and the optimal solution (x, y) = (1, 2).

------30 Marks

Question 2

(a)The standard form of this problem is:

maximize
$$f = x - 3y + 3z$$

s.t $2x + y - z + s_1 = 4$
 $4x - 3y + s_2 = 2$
 $-3x + 2y + z + s_3 = 3$, x, y, z, $s_1, s_2, s_3 \ge 0$

where s_{1}, s_{2} and s_{3} are slack variables.

The steps of the simplex method goes as:

B.V	X	У	Z	s 1	s2	s 3	Solu
s 1	2	1	-1	1	0	0	4
s2	4	-3	0	0	1	0	2
s3	-3	2	1	0	0	1	3
f	-1	3	-3	0	0	0	0
s 1	-1	3	0	1	0	1	7
s2	4	-3	0	0	1	0	2
Z	-3	2	1	0	0	1	3
f	-10	9	0	1	0	3	9
s 1	0	9/4	0	1	1/4	1	15/2
Х	1	-3/4	0	0	1/4	0	1/2
Z	0	-1/4	1	0	3/4	1	9/2
f	0	3/2	0	0	5/2	3	14

This is the optimum case. Then, the optimal solution is: (x*, y*, z*) = (1/2, 0, 9/2) and the optimal value is f * = 14.

(b) The standard form of this problem is: minimize f = -5x - y - 4zs.t $x + y + 2z + s_1 = 20$ 2x + 3y + 2z + u = 10x + 2y + 2z - t + v = 6, x, y, z, s_1 , t, u, $v \ge 0$

------25 Marks

where s_1 is slack variable, t is surplus variable and u, v are artificial variables.

Let w = u + v. Then, the objective of phase one is:

$$w + 3x + 5y + 4z - t = 16$$

The steps of phase one goes as table :

B.V	X	у	Z	t	S 1	u	V	Solu
s 1	1	1	2	0	1	0	0	20
u	2	3	2	0	0	1	0	10
v	1	2	2	-1	0	0	1	6
f	5	1	4	0	0	0	0	0
w	3	5	4	-1	0	0	0	16
s 1	1/2	0	1	1/2	1	0	-1/2	17
u	1/2	0	-1	3/2	0	1	-3/2	1
У	1/2	1	1	-1/2	0	0	1/2	3
f	-9/2	0	3	1/2	0	0	-1/2	-3
W	1/2	0	-1	3/2	0	0	-5/2	1
S 1	1/3	0	4/3	0	1	-1/3	0	50/3
t	1/3	0	-2/3	1	0	2/3	-1	2/3
У	2/3	1	2/3	0	0	1/3	0	10/3
f	-13/3	0	-10/3	0	0	1/3	0	- 10/3
W	0	0	0	0	0	-1	-1	0

This is the end of phase one. Also, it is the of phase two. This is the optimum case. Then, the optimal solution is: $(x^*, y^*, z^*) = (0, 10/3, 0)$ with optimal value f * = - 10/3.

------30 Marks

Question 3

(a)**Convex set**: A set M is called convex if for all two points x and y in M, all points of the line segment $\lambda x + (1 - \lambda)y$, $0 < \lambda < 1$, lie in M.

(b)Concave function: A function f is called concave on a set M if for all two points x and

(c)Theorem:

------20 Marks

Question 4

(a)Let x be the number of trucks and y the number of automobiles to be produced per week. Then

available Х У Shop 1 2 5 180 Shop 2 3 3 135 Then the constraints are: $5x + 2y \le 180$, $3x + 3y \le 135$. The objective function is: f = 300x + 200y.Then the LP model is: maximize f = 300x + 200ys.t $5x + 2y \le 180$ $3x + 3y \le 135$, x, $y \ge 0$.

This LP problem can be solved graphically as shown in Figure 8. Then the maximum profit is LE 12000 at the optimal solution

(x*, y*) = (30,15).

Dr. Mohamed Eid

Final Exam and ILOs

Course Title: Operations Research Code: EMM 406

	ILOs									
Questions	Knowle	dge and	Intellectu	al Skills	Professional and					
	Unders	tanding			Practical Skills					
	2.1.1	2.1.2	2.2.3	2.2.7	2.3.2					
Q1	\checkmark		\checkmark							
02			λ	N						
Q2				, ,						
Q3	V		V							
Q4			\checkmark							

Dr. Mohamed Eid